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Workshop on Innovation on Information and
Communication Technologies (ITACA-WIICT

2024). A Preface

Carlos Fernandez-Llatas1[0000−0002−2819−5597] and Maria Guillen1

Instituto ITACA, Universitat Politecnica de Valencia

In recent years, the field of technology has witnessed an exponential growth
in the development and application of advanced computational techniques, par-
ticularly in areas such as wireless sensor networks (WSNs), machine learning,
and fault-tolerant embedded systems. These advancements have not only rev-
olutionized traditional industries but have also introduced new challenges and
opportunities for enhancing efficiency, security, and sustainability. This book
presents a collection of papers that address some of the most pressing issues in
these domains, providing a comprehensive overview of current trends, method-
ologies, and solutions.

The papers included in this volume were presented at the ITACA-WIICT’24,
a workshop that serves as a meeting forum for scientists, technicians, and profes-
sionals dedicated to the study and research of Information and Communication
Technologies (ICT). The primary goal of this workshop is to foster collaboration
and the exchange of ideas among participants, promoting technological transfer
and cooperation between academia and industry.

The first paper, "Enhancing attack detection in Wireless Sensor Networks:
definition of a specialized dataset", delves into the security challenges faced by
WSNs. This research highlights the vulnerabilities of these networks to Denial
of Service (DoS) attacks and emphasizes the importance of anomaly detection
techniques. By focusing on the LEACH protocol, a widely-used hierarchical rout-
ing protocol, the study develops a specialized dataset to enhance the detection
and classification of various DoS attacks, including Blackhole, Grayhole, Flood-
ing, and Sinkhole attacks. The paper also explores the role of machine learning
techniques such as Convolutional Neural Networks (CNNs) and Recurrent Neu-
ral Networks (RNNs) in improving the security of WSNs and mitigating these
threats.

The second paper, "Improving the efficiency of Matrix Codes using Hsiao
Codes", addresses the growing concern of memory system reliability in embedded
systems, particularly in the context of Single and Multiple Cell Upsets (SCUs and
MCUs). As the continuous scaling down of CMOS technology increases the fault
rate in SRAM memories, the need for robust Error Correction Codes (ECCs)
becomes paramount. This study proposes the use of Hsiao codes in Matrix code
structures to reduce area, power, and delay overheads while maintaining error
detection and correction capabilities. The evaluation of these ECCs, through
fault injection and VHDL synthesis, demonstrates the potential of Hsiao-based

1 C.Fernandez-Llatas and M.Guillen (Ed.):
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2 Fernandez-Llatas and Guillen

Matrix codes in improving the efficiency and reliability of memory systems in
embedded environments.

In the third paper, "Analysis of the impact of faults in a Convolutional
Neural Network implemented in a Raspberry Pi", the focus shifts to the reliabil-
ity of neural networks deployed on embedded systems, particularly in resource-
constrained devices such as the Raspberry Pi. The paper investigates how faults
in the memory, specifically bit-flips and stuck-at faults, impact the behavior of
Convolutional Neural Networks (CNNs). Through a series of fault injection cam-
paigns, the study analyzes the vulnerability of different layers of the network and
identifies which bits are more susceptible to causing mispredictions. The results
provide valuable insights into the design of fault-tolerant neural networks and
highlight the importance of addressing reliability issues in embedded systems
running memory-intensive applications.

The final paper, "In situ dielectric characterization as a tool towards more
sustainable industrial processes", explores the application of microwave dielec-
tric thermal analysis (MW-DETA) in improving the sustainability of energy-
intensive industrial processes. By analyzing the dielectric properties of materials
in real-time, this technique enables the optimization of processes such as the
synthesis of ceramic pigments and the recycling of steel industry wastes. The
study demonstrates how MW-DETA can reduce reaction temperatures, simplify
raw material mixtures, and ultimately minimize resource consumption. This ap-
proach not only enhances process efficiency but also contributes to lowering the
environmental impact of industrial operations.

Each of these papers represents a significant contribution to its respective
field, reflecting the interdisciplinary nature of modern technological challenges.
Collectively, they offer valuable insights into the development of innovative solu-
tions for enhancing security, reliability, and sustainability in embedded systems,
WSNs, and industrial processes.

We hope that this collection of papers will inspire further research and collab-
oration across multiple disciplines, ultimately contributing to the advancement
of technology in ways that benefit both industry and society.
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Enhancing attack detection in Wireless Sensor Networks:  
definition of a specialized dataset                                                        

Amal Chaffai, José Carlos Campelo, Alberto Miguel Bonastre  

ITACA Institute, Universitat Politècnica de València 
Edificio 8G Ciudad Politécnica de la Innovación, Camí de Vera, s/n, 46022 Valencia, Spain 

amcha@doctor.upv.es; {jcampelo, bonastre}@itaca.upv.es                                                               

                                                                                                                                          
Abstract. Wireless Sensor Networks (WSNs) are integral to many modern ap-
plications, ranging from environmental monitoring to smart cities. However, 
they are susceptible to various security threats, particularly Denial of Service 
(DoS) attacks. This paper explores the landscape of DoS attacks on WSNs and 
proposes the development of a specialized dataset to better detect and classify 
four types of DoS attacks: Blackhole, Grayhole, Flooding, and Sinkhole. The 
definition of a specialized dataset will allow both the comparison between 
different intrusion detection systems and the application of learning tech-
niques to enhance WSN security. By considering the LEACH protocol, one of 
the most popular hierarchical routing protocols in WSNs, we focus on identi-
fying data anomalies. Additionally, we discuss various anomaly detection 
methods. The most relevant DoS attacks are analyzed and how the infor-
mation of interest can be extracted for analysis, cataloging, and detection is 
described.  

 
1 Introduction 
 
Wireless Sensor Networks (WSNs) present unique security challenges due to their 
inherent characteristics, including resource constraints, dynamic topology, and sus-
ceptibility to physical attacks [1,2]. These challenges encompass various aspects of 
security. Including resource constraints since sensor nodes in WSNs are typically 
constrained in terms of processing power, memory, and energy. Securing commu-
nication and data processing while operating within these constraints presents sig-
nificant challenges. Moreover dynamic topology, WSNs often operate in dynamic 
environments where nodes may join or leave the network unpredictably. This dy-
namic topology introduces vulnerabilities and complicates security management. 
Additionally vulnerability to Physical Attacks, the deployment of sensor nodes in 
unattended or hostile environments exposes WSNs to physical attacks, such as node 
capture, tampering, and compromise.  

 
Denial of Service (DoS) attacks pose a significant threat to WSNs, aiming to disrupt 
network operations by overwhelming nodes or communication channels. 
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Furthermore, addressing DoS attacks in WSNs requires robust detection and miti-
gation strategies to ensure network resilience and reliability. Machine learning 
techniques, particularly neural networks (NN), can play a crucial role in enhancing 
network security in WSNs. These techniques offer capabilities for anomaly detec-
tion, where Machine learning algorithms can analyze network traffic patterns to 
identify anomalies indicative of DoS attacks or other security breaches. Also, intru-
sion detection by learning from historical data, machine learning models can detect 
and classify suspicious activities or behaviors, enabling proactive responses to secu-
rity threats. As well the mitigation strategies of Machine learning algorithms can 
aid in developing adaptive defense mechanisms that dynamically adjust to evolving 
threats and protect WSNs against DoS attacks and other security vulnerabilities. In-
tegrating machine learning into WSN security frameworks enhances the ability to 
detect, respond to, and mitigate security threats effectively [15]. 

 
This combined overview provides a comprehensive understanding of the security 
challenges faced by WSNs, with a specific focus on DoS attacks and the role of ma-
chine learning in addressing these challenges. The LEACH (Low-Energy Adaptive 
Clustering Hierarchy) protocol, one of the most popular hierarchical routing proto-
cols in WSNs, is considered in this study. By examining the different types of anom-
alies that can occur within WSNs, particularly data anomalies, we aim to identify 
effective anomaly detection methods.  
 
The rest of paper is organized as follows. Section 2 shows related works. Section 3 
provides an overview of LEACH protocol. Section 4 details the essential features to 
build the dataset. Section 5 presents the attack models and Section 6 outlines the 
experimentation. Finally, conclusions are presented in Section 7. 
 
2 Related Work 
 
Denial of Service (DoS) attacks represent a significant threat to the security of Wire-
less Sensor Networks (WSNs), largely due to their relative ease of execution [12]. In 
recent years, researchers have increasingly turned to machine learning techniques 
for the detection and mitigation of such attacks. This section reviews some notable 
works in this domain, highlighting the efficacy of machine learning models in iden-
tifying DoS attacks in WSNs. Kim et al. [6] proposed a model based on a Convolu-
tional Neural Network (CNN) for detecting DoS attacks using datasets such as KDD-
99 and CICIDS2018. By treating input features as "images" and leveraging CNNs, 
their model achieved high accuracy rates exceeding 99% in both binary (normal vs. 
attack) and multiclass classification scenarios. Wu et al. [2] introduced LuNet, a hi-
erarchical CNN+RNN neural network architecture, trained on datasets like NSL-
KDD and UNSW-NB15. LuNet employs multiple levels of CNN and RNN to jointly 
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learn from input data, achieving impressive accuracies of up to 99.36% and 99.05% 
in binary and multiclass classification tasks, respectively. Almomani et al. [3] inves-
tigated the effectiveness of eight different machine learning models, including Na-
ive Bayes, Decision Trees, Random Forests, and Support Vector Machine, in detect-
ing DoS attacks using a WSN-DS dataset. Notably, the Random Forest algorithm 
outperformed other models with a True Positive rate of 99.7%. Park et al. [7] pro-
posed a Random Forest classifier to detect various types of DoS attacks using the 
WSN-DS dataset. Their model achieved high F1-scores and an overall accuracy of 
97.8% across different attack types. Wazirali and Ahmad [8] evaluated machine 
learning classification algorithms for detecting flooding, gray hole, and black hole 
DoS attacks in WSNs. Their findings revealed that the J48 approach is the most ac-
curate and efficient method for identifying gray hole and black hole attacks, while 
the Random Tree method excels in detecting flooding assaults. Despite the advance-
ments in machine learning-based detection techniques, the absence of a public-do-
main specialized dataset for WSNs poses a significant challenge. Therefore, there is 
an urgent need to develop a labeled, specialized dataset that accurately characterizes 
WSN behaviors, both normal and anomalous. 

 
3 Overview of LEACH protocol 
 
The Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol is a popular hi-
erarchical routing protocol designed specifically for Wireless Sensor Networks 
(WSNs). It aims to prolong network lifetime by minimizing energy consumption, a 
critical concern in resource-constrained sensor nodes. LEACH operates based on 
the principle of clustering, dividing the network into clusters and electing cluster 
heads (CHs) to facilitate data aggregation and transmission. 
 
LEACH is different from conventual static clustering because the Cluster Head(CH) 
and Clusters are not fixed. The basic idea can be broken down in 3 steps and it is 
repeated every round. The procedure is: i) Election of CH, ii) Formation of Clusters 
and iii) Data transfer to CH, then from CH to Sink. 

 
i) Election of CH: 
Each node in network selects randomly a number between zero and one. If that 

number is less than a set threshold, then this node becomes a cluster head: 
 

𝑇(𝑛) = 	'

𝑝

1 − 𝑝 ∗ ,𝑟	mod	 1𝑃2
							𝑖𝑓	𝑛	 ∈ 𝐺	

		0																																						𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where  
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• p = desired percentage of cluster head within network. 
• r = current round. 
• G = set of nodes that have not been CH in last 1/P rounds. 
• n = is the node. 

 
ii) Cluster Formation:  
After each node decides whether to become a CH for a current round based on 

the previous probabilistic model, the remaining nodes join the nearest CH. 
 
iii) Data Aggregation:  
Cluster heads collect data from member nodes within their respective clusters 

and perform aggregation to reduce redundant transmissions and conserve energy. 
Aggregated data is then forwarded to the base station or sink node via multi-hop 
communication. 

 
To distribute energy consumption evenly among nodes and prevent premature node 
failure, LEACH employs a rotational scheme where cluster heads are rotated peri-
odically. This rotation helps mitigate the energy imbalance issue commonly ob-
served in WSNs and prolongs network lifetime. Moreover, LEACH is designed to 
adapt to dynamic network conditions such as node failures, changes in topology, 
and varying energy levels. It employs mechanisms to handle cluster head failures 
by electing new CHs and redistributing cluster memberships as needed. 

 
4 The essential features to build the dataset 

 
We first need to define the types of features commonly used in Wireless Sensor 
Networks (WSNs) for detecting and classifying Denial of Service (DoS) attacks. 
Here's a general overview of the types of features that will be extracted from WSN 
data: 
Traffic Features: these include various metrics related to network traffic, such as 
packet rate, packet size distribution, and packet inter-arrival times. Analysis of traf-
fic features can reveal abnormalities indicative of DoS attacks, such as sudden spikes 
in traffic volume or irregular patterns. As well Network Topology Features describe 
the spatial arrangement and connectivity of sensor nodes within the network. Ex-
amples include node density, neighbor relationships, and network diameter. 
Changes in network topology may signal the presence of attack-induced node fail-
ures or compromised nodes. Additionally Communication Features capture com-
munication patterns and protocols used within the network. For instance, metrics 
like packet loss rates, retransmission rates, and communication latency can provide 
insights into the integrity and efficiency of data transmission. Anomalies in 
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communication features may indicate DoS attacks targeting network communica-
tion channels. And Energy Consumption Features given the resource-constrained 
nature of WSNs, monitoring energy consumption is crucial for detecting abnormal 
behaviors and potential attacks. Features related to energy usage, such as battery 
voltage levels, energy consumption rates, and power-saving mode activations, can 
help identify energy-draining DoS attacks or compromised nodes. Moreover Data 
Content Features pertain to the actual sensor data collected by nodes within the 
network. Depending on the application domain, data content features may include 
environmental parameters, event occurrences, or sensor readings. Deviations from 
expected data patterns or values may indicate data manipulation or injection attacks. 
As well as Temporal and Spatial Features capture variations in network behavior 
over time, while spatial features characterize spatial distributions and correlations 
within the network. Analysis of temporal and spatial features enables the detection 
of coordinated attacks or localized anomalies that may evade traditional detection 
methods. Accordingly Statistical and Machine Learning-based Features, from statis-
tical analysis or machine learning algorithms can provide additional insights into 
network behavior and aid in anomaly detection. Examples include statistical mo-
ments (mean, variance, skewness), frequency domain features (Fourier transform 
coefficients), and feature representations learned from deep learning models. 

By extracting and analyzing these diverse sets of features from the constructed 
dataset, the research can develop robust detection and classification models capable 
of accurately identifying various types of DoS attacks in WSNs. The selection and 
engineering of features play a crucial role in the effectiveness and generalization 
ability of machine learning-based security solutions for WSNs. 

 
5 Attacks models  
 
To address various types of attacks in Wireless Sensor Networks (WSNs), re-

searchers have developed different models and algorithms tailored to detect and 
mitigate specific attack vectors [3,4,5]. Here are some common attack models in 
WSNs along with corresponding detection or mitigation techniques as illustrated in 
Fig.1. 

 
Blackhole Attack: 

• Attack Description: Malicious nodes advertise themselves as having the short-
est paths to the sink, attracting traffic that they drop or manipulate, leading to 
data loss [9,10]. 

• Detection/Mitigation Techniques: 
Trust-based mechanisms: Nodes maintain trust levels for their neighbors and 
avoid routing data through untrusted nodes. 
Watchdog mechanisms: Nodes monitor their neighbors' behavior and detect 
anomalies such as data dropping. 
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Intrusion detection systems: Algorithms analyze network traffic patterns to 
identify deviations indicative of blackhole attacks. 

 
 

 
Figure 1. WSN attacks. 

Grayhole Attack: 
• Attack Description: Malicious nodes selectively drop or modify packets, caus-

ing disruptions without being immediately detected. 
• Detection/Mitigation Techniques: 

Packet authentication and verification: Nodes use cryptographic techniques to 
verify packet integrity and authenticity. 
Secure routing protocols: Protocols employ secure routing mechanisms to en-
sure data delivery even in the presence of malicious nodes. 
Redundancy-based schemes: Data is replicated and sent through multiple 
paths to mitigate the impact of packet loss by grayhole nodes. 
 

Sinkhole Attack: 
• Attack Description: Malicious node attracts all the traffic in a network by ad-

vertising itself as the shortest or most efficient route. Once the traffic is redi-
rected, the attacker can perform various malicious activities, such as dropping 
packets (blackholing), eavesdropping on communications, or selectively for-
warding packets to disrupt the network's normal operation [14]. 

• Detection/Mitigation Techniques: 

  Blackhole attack in WSN                                            Amal Chafai 
 
 

 

                                                                                                                         

                                                                                                             

 

 

                                                    

 

 

 

 

                                                  Fig.1 Scenarios WSN Attacks  

WSN Attacks 

Passive Attacks Active Attacks 

Denial of Services Attacks 

Data Traffic Attacks Control Traffic Attacks 

Blackhole Grayhole Sinkhole Hello flood 
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Traffic Pattern Analysis: Continuously monitor network traffic for abnormal 
routing patterns. Algorithms can detect if a single node is disproportionately 
attracting traffic, which might indicate a sinkhole attack. 
Authentication and Integrity Checks: 
Node Authentication: Implement strong authentication mechanisms to ensure 
that only legitimate nodes can participate in the network. Use cryptographic 
techniques to authenticate routing updates. 

 
Flooding Attack: 

• Attack Description: Attackers flood the network with excessive traffic, con-
suming network resources and rendering legitimate communication impossi-
ble [11]. 

• Detection/Mitigation Techniques: 
Traffic analysis: Algorithms monitor network traffic patterns and identify ab-
normal spikes in traffic volume. 
Rate limiting: Nodes enforce strict rate limits on incoming traffic to prevent 
network congestion caused by flooding attacks. 
Packet filtering: Nodes discard duplicate or suspicious packets to conserve 
bandwidth and prevent resource depletion. 

   
6 Experimentation 

 
Design the Data Collection Framework 

• Tools and Platforms: Use of simulation tools like NS-3 [13] or real-world 
testbeds to generate data. 

• Real-time Data Collection: Testbeds like IoT-LAB 
• Data Labeling Tools: Labelbox, Snorkel 
• Preprocessing and Analysis: Python (Pandas, NumPy), R 

 
Dataset Construction: 
We will construct a specialized dataset tailored to characterize various types of De-

nial of Service (DoS) attacks in Wireless Sensor Networks (WSNs). The dataset will 
comprise simulated network traffic and sensor data generated using a network simula-
tor, incorporating realistic network topologies and attack scenarios. We will design the 
dataset to include representative instances of Blackhole, Grayhole, Flooding, and 
Scheduling attacks, as well as normal network behavior for comparison. 

 
Feature Extraction: 
From the constructed dataset, we will extract a comprehensive set of features to cap-

ture different aspects of network behavior and attack patterns. These features will in-
clude traffic metrics, network topology characteristics, communication patterns, energy 
consumption profiles, and data content attributes. Additionally, statistical and machine 
learning-based features will be derived from the raw data to enhance the discriminative 
power of our models. 
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Experimental Setup: 
We will conduct our experiments in a controlled laboratory environment using stand-

ard WSN simulation tools and machine learning libraries. The experiments will be car-
ried out on a computing platform equipped with adequate computational resources to 
handle the dataset size and model training requirements efficiently. 

 
Model Evaluation: 
We will evaluate the performance of various machine learning models for detecting 

and classifying DoS attacks in WSNs using the constructed dataset. The evaluated mod-
els include Convolutional Neural Networks (CNNs), Recurrent Neural Networks 
(RNNs). 

 
Performance Metrics: 
To assess the effectiveness of the models, we will employ standard performance 

metrics such as accuracy, precision, recall, F1-score, and area under the receiver oper-
ating characteristic curve (AUC-ROC). These metrics provide insights into the models' 
ability to correctly classify different attack types while minimizing false positives and 
false negatives. 

 
7 Conclusions 
 
Our study contributes to the field of Wireless Sensor Networks (WSNs) security by 
addressing the detection and classification of Denial of Service (DoS) attacks.  

 
This is a first step in the design of techniques to improve WSN attack detection capa-
bilities. With artificial intelligence techniques deployed in all areas of our life, their 
application in WSN environments require a specialized and labeled dataset that will 
allow us to perform the training. In addition, the data set will allow comparisons to be 
made between different developments.  This way, feature extraction and selection play 
a critical role in the performance of machine learning models for WSN security. Thus, 
in this proposal, we have shown the guidelines to extract the information of interest 
from the most representative attacks, starting from a real but simulated workload of the 
operation of a WSN to which the attack models are added. We found that incorporating 
diverse sets of features, including traffic metrics, network topology characteristics, and 
data content attributes, enhances the models' ability to discern between normal and 
anomalous behaviors. 

 
In summary, our study lays the groundwork for advancing the state-of-the-art in WSN 
security through interdisciplinary collaboration and innovative research initiatives. By 
addressing the identified challenges, we can create more resilient and secure WSN sys-
tems capable of supporting a wide range of critical applications in the future. 
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Abstract. With the continuous size reduction of CMOS technology, faults suf-
fered by SRAM memory systems increase. In this way, the probability of occur-
rence of Multiple Cell Upsets (MCUs), in addition to Single Cell Upsets 
(SCUs), augments. Thus, Fault Tolerance Mechanisms (FTMs) are needed to 
protect memory systems. Traditionally, Error Correction Codes (ECCs) are a 
family of FTMs that have been used to protect memories. Nevertheless, an as-
pect that must be considered when an ECC is added to a computer system is the 
area, delay, and power consumption overheads that encoder and decoder cir-
cuits introduce. Matrix codes, used as a basis for different ECCs, are an exam-
ple of common FTMs to cope with MCUs. These codes are based on Extended 
Hamming codes and parity checks. Nevertheless, they incur in substantial area, 
power, and delay overheads. 
In this work, we present a series of Matrix codes based on Hsiao codes that re-
duce overhead by improving error coverage. Also, we evaluate the global good-
ness of the ECCs by using a metric that includes the most important factors.  

1   Introduction 

Nowadays, the continued physical feature size downscaling of CMOS technology 
provides RAM memory systems with a great storage capacity. Nevertheless, this size 
decrease has also caused an augment in the memory fault rate [1]. With the present 
aggressive scaling, the energy needed to provoke a Single Event Upset (SEU) in stor-
age has been reduced. This energy reduction can provoke Multiple Cell Upsets 
(MCUs) in addition to traditional Single Cell Upsets (SCUs) [2][3]. This downscaling 
is especially problematic in spatial systems, as this is an aggressive environment sub-
jected to the impact of high-energy cosmic particles [4][5]. 

Usually, when a cosmic particle hits a memory cell, it produces a flow of electron-
hole pairs along the transport track [6]. In this way, adjacent errors can be generated, 
that is, multiple errors where all the erroneous bits are contiguous [7][8]. 

Thus, Fault Tolerance Mechanisms (FTMs) are needed to tolerate such faults. 
FTMs used in memories are frequently based on Error Correction Codes (ECCs). 
Common ECCs used to protect standard memories are Single Error Correction (SEC) 
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codes or Single Error Correction-Double Error Detection (SEC-DED) codes. SEC 
codes can correct an error in one single memory cell. On the other hand, SEC-DED 
codes can correct an error in one single memory cell, as well as detect two errors in 
two independent cells [9][10][11]. In critical applications, more complex and sophis-
ticated codes are used [12][13][14][15][16][24]. For instance, Matrix code [15] is a 
well-known ECC that has been used as a basis for different ECCs [16][17][18][19]. 
Matrix code combines Hamming codes with parity checks in a two-dimensional 
scheme, allowing the correction of two data bits in error. 

Nevertheless, when ECCs are introduced in memory systems, a series of redundant 
bits are added. These extra bits are used to detect and/or correct the possible errors 
produced. In this way, the inclusion of these extra bits implies an overhead in the 
area, power, and delay consumed by the ECC circuitry. 

It has been shown that it is feasible to reduce overheads by using SEC-DED Hsiao 
code [20] instead of SEC-DED Hamming code. This is possible by using a careful 
design of the parity check matrix that defines the code [21][22]. But, is this true when 
Hsiao code is used in a Matrix code? That is, can we reduce overhead in Matrix codes 
by using Hsiao codes? To what extent? Is this true for any data word length? 

We answer these questions in this work. The idea is to use Hsiao codes to improve 
Matrix schemes. We have designed and implemented a series of Matrix codes that use 
SEC-DED Hamming codes or Hsiao codes plus parity checks. Then, we have injected 
faults to check the detection and correction properties of these codes. Also, we have 
synthesized them to measure area, power, and delay consumption. Finally, to do a 
global ECC evaluation, we have used a metric that considers area, power, and delay 
overheads, as well as error coverage and redundancy of each code [23].  

This work is organized as follows. Section 2 summarizes the design of ECCs, in-
cluding Matrix and Hsiao codes. Section 3 presents the evaluation of the different 
ECCs implemented, and Section 4 concludes the paper. 

2   Introduction to the design of Error Correction Codes  

2.1   Basics on coding theory  

An (n, k) binary ECC encodes a k-bit input word in an n-bit output word [24]. The 
input word u=(u0, u1, …, uk–1) is a k-bit vector which represents the original data. The 
codeword b=(b0, b1, …, bn–1) is a vector of n bits, where the (n – k) redundant bits 
added are called parity or code bits. b is transmitted across an unreliable channel 
which delivers the received word r=(r0, r1, …, rn–1). The error vector e=(e0, e1, …,    
en–1) models the error induced by the channel. If no error has occurred in the ith bit, 
ei=0; otherwise, ei =1. In this way, r can be interpreted as r = b ⊕ e. Fig. 1 synthesiz-
es this encoding, channel crossing and decoding process. 
 

13



Encoder Lookup
Table

u +

e

b r s
+e b̂^Syndrome

Calculation

 
Fig. 1. Encoding, channel crossing and decoding process 

The parity check matrix H(n–k)×n of a linear block code defines the code [9]. For the 
encoding process, b must accomplish the requirement H·bT=0. For syndrome decod-
ing, the syndrome is defined as sT=H·rT, and it exclusively depends on e: 

sT = H·rT = H·(b ⊕ e)T = H·bT ⊕ H·eT = H·eT   (1) 

There must be a different s for each correctable e. If s=0, we can assume that e=0. 
Therefore, r is correct. Otherwise, an error has occurred. Syndrome decoding is per-
formed by addressing a lookup table that relates each s with the estimated error vector 

. The decoded codeword  is calculated as . As the code is separable, 
from  it is easy to obtain  just discarding the parity bits. If the fault hypothesis 
employed to design the ECC is consistent with the channel behavior,  and u must be 
equal with a very high probability. 

2.2   Matrix codes 

SEC-DED (Single Error Correction-Double Error Detection) Extended Hamming 
codes [10] can correct single bit errors and detect double random errors. 

As just commented, a code can be defined by a parity check matrix. Specifically, in 
this paper we have used the parity check matrix shown in (2) to define the SEC-DED 
Extended Hamming code used in the Matrix code, where Xi are the data bits and Cj 
are the horizontal check bits. This parity check matrix has been extracted from [15]. 

                                                      C0C1 ······C4 X0X1 ·············X7 

    (2) 

From H matrix, it is possible to obtain the encoding and decoding formulas used 
by the ECC. Specifically, by using the formulas shown in (3), the calculus of Cj can 
be done as: 

 
 

  (3) 

 

𝐶𝐶0 = 𝑋𝑋0⨁ 𝑋𝑋1⨁ 𝑋𝑋3⨁ 𝑋𝑋4⨁ 𝑋𝑋6 
𝐶𝐶1 = 𝑋𝑋0⨁ 𝑋𝑋2⨁ 𝑋𝑋3⨁ 𝑋𝑋5⨁ 𝑋𝑋6 
𝐶𝐶2 = 𝑋𝑋1⨁ 𝑋𝑋2⨁ 𝑋𝑋3⨁ 𝑋𝑋7 
𝐶𝐶3 = 𝑋𝑋4⨁ 𝑋𝑋5⨁ 𝑋𝑋6⨁ 𝑋𝑋7 
𝐶𝐶4 = 𝑋𝑋0⨁ 𝑋𝑋1⨁ 𝑋𝑋2⨁ 𝑋𝑋3⨁ 𝑋𝑋4⨁ 𝑋𝑋5⨁ 𝑋𝑋6⨁ 𝑋𝑋7 
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On the other hand, to calculate the syndrome bits, (4) are used: 
 
 

  (4) 
 
 
 
To form the matrix code, we have used the logical bit layout shown in Fig. 2 (ex-

tracted from [15]), where Xi are the data bits, Cj are the horizontal check bits (calcu-
lated using the SEC-DED Hamming code obtained from (3)), and Pk are the column 
parity bits (calculated using even parity). In this way, by combining Hamming codes 
and parity checks [15], this Matrix code form a two-dimensional scheme for correct-
ing and detecting some patterns of MCUs. 

 
X0 X1 X2 X3 X4 X5 X6 X7 C0 C1 C2 C3 C4 
X8 X9 X10 X11 X12 X13 X14 X15 C5 C6 C7 C8 C9 
X16 X17 X18 X19 X20 X21 X22 X23 C10 C11 C12 C13 C14 
X24 X25 X26 X27 X28 X29 X30 X31 C15 C16 C17 C18 C19 
P0 P1 P2 P3 P4 P5 P6 P7      

Fig. 2. Layout of a 32 data-bit word for the Matrix code (extracted from [15]) 

The logical layout shown in Fig. 2 can be changed to adapt it to different data word 
sizes. In this work, we have used also 16 and 64 data bits, with the logical layouts 
shown in Fig. 3 and Fig. 4, respectively. 

 
X0 X1 X2 X3 X4 X5 X6 X7 C0 C1 C2 C3 C4 
X8 X9 X10 X11 X12 X13 X14 X15 C5 C6 C7 C8 C9 
P0 P1 P2 P3 P4 P5 P6 P7      

Fig. 2. Layout of a 16 data-bit word for the Matrix code 

X0 X1 X2 X3 X4 X5 X6 X7 C0 C1 C2 C3 C4 
X8 X9 X10 X11 X12 X13 X14 X15 C5 C6 C7 C8 C9 
X16 X17 X18 X19 X20 X21 X22 X23 C10 C11 C12 C13 C14 
X24 X25 X26 X27 X28 X29 X30 X31 C15 C16 C17 C18 C19 
X32 X33 X34 X35 X36 X37 X38 X39 C20 C21 C22 C23 C24 
X40 X41 X42 X43 X44 X45 X46 X47 C25 C26 C27 C28 C29 
X48 X49 X50 X51 X52 X53 X54 X55 C30 C31 C32 C33 C34 
X56 X57 X58 X59 X60 X61 X62 X63 C35 C36 C37 C38 C39 
P0 P1 P2 P3 P4 P5 P6 P7      

Fig. 4. Layout of a 64 data-bit word for the Matrix code 

The basic behavior of the Matrix code is as follows. The primary data input (Xi) is 
divided into groups of several bits. In this work, this division is in groups of 8 bits. 
Each group is codified using a (13, 8) SEC-DED Hamming code (Cj). Lastly, a set of 
vertical parity bits (Pk) completes the matrix. In this way, these Matrix codes can 

 

𝑆𝑆0 = 𝐶𝐶0⨁ 𝑋𝑋0⨁ 𝑋𝑋1⨁ 𝑋𝑋3⨁ 𝑋𝑋4⨁ 𝑋𝑋6 
𝑆𝑆1 = 𝐶𝐶1⨁ 𝑋𝑋0⨁ 𝑋𝑋2⨁ 𝑋𝑋3⨁ 𝑋𝑋5⨁ 𝑋𝑋6 
𝑆𝑆2 = 𝐶𝐶2⨁ 𝑋𝑋1⨁ 𝑋𝑋2⨁ 𝑋𝑋3⨁ 𝑋𝑋7 
𝑆𝑆3 = 𝐶𝐶3⨁ 𝑋𝑋4⨁ 𝑋𝑋5⨁ 𝑋𝑋6⨁ 𝑋𝑋7 
𝑆𝑆4 = 𝐶𝐶4⨁ 𝑋𝑋0⨁ 𝑋𝑋1⨁ 𝑋𝑋2⨁ 𝑋𝑋3⨁ 𝑋𝑋4⨁ 𝑋𝑋5⨁ 𝑋𝑋6⨁ 𝑋𝑋7 
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correct all single errors, as well as they can correct and detect all 2-bit random errors 
affecting data bits Xi. When a single error is produced in a row, it can be corrected by 
using the syndrome bits generated by comparing the code bits stored in memory with 
the code bits calculated with the data bits also stored in memory. In the case of 2-bit 
errors in the same row, the parity check bits are also used. 

Nevertheless, these ECCs present two main problems. Firstly, the redundant bits 
(Cj and Pk) add a great overhead in the area, power, and delay of the memory system. 

Secondly, these Matrix codes are not able to correct all double errors produced in a 
row. As it can be seen in (3), C4 bit calculates the even parity of the data bits only (Xi 
bits). That is, the Matrix code presented in [15] uses a pseudo Extended Hamming 
code. It behaves like a SEC code for all the codeword bits (Xi-Cj), but the double error 
detection (DED behavior) is only accomplished in the data bits (the Xi bits). 

In this way, combining the value of C4 with the value of the rest of Cj bits and with 
the values of the parity bits (Pk), it is possible to detect and correct all double errors 
produced in the data bits, that is, only in the Xi bits. 

So, what happens when a double error affects a data bit and a code bit? Let’s see an 
example of this event. Let’s suppose there is a double error that affects a data bit (Xi 
bit) and a code bit (Cj bit). In this case, C4 bit detects only a single bit error (in the Xi 
bit, as Cj bits are not included in this calculus). When the system tries to correct the 
error, syndrome bits C0-C3 points to a bit different to the erroneous Xi bit. Thus, the 
correction is done in a non-erroneous bit, introducing a new error. 

2.3   Hsiao codes 

When defining the parity check matrix H of a Hsiao code, three constraints must 
be satisfied [20]: 

1. There are no all-0 columns. 
2. Every column is distinct. 
3. Every column contains an odd number of 1’s. 

 
The first two constraints give a code with a Hamming distance of 3. The third con-

straint guarantees an ECC with a Hamming distance of 4. Thus, the code generated is 
a SEC-DED code for all the codeword. 

Hsiao codes constructed in [20] always showed fewer 1’s in its parity check matrix 
H than the Hamming SEC-DED codes. This translates into less hardware area in the 
corresponding ECC circuitry, implying a lower static power consumption. Further-
more, by selecting the odd weight columns in a way that balances the number of 1’s 
in each row of the H-matrix, the dynamic power also reduces. This reduction is pro-
voked because the number of transitions in encoder/decoder circuits is limited. In 
addition, the delay of the checker can be minimized, as the delay is constrained by the 
maximum weight row. If we assume the use of typical 2-input XOR gates, the delay is 
proportional to the maximum number of logic levels in the row equations. So: 

 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ~ log2[𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑟𝑟𝑟𝑟𝑟𝑟]         (5) 
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Particularly, the parity check matrix used in this paper is shown in (6), where Xi 
are the data bits and Cj are the horizontal check bits. 

 
                                 C0C1 ······C4 X0X1 ·············X7 

    (6) 

 
As it can be seen, this parity matrix satisfies the three constraints commented be-

fore to define a Hsiao code. In fact, we have been able to design a Hsiao code with a 
maximum of only three 1’s bits per column. As commented previously, it is very easy 
to obtain the encoding and decoding formulas from H, as shown in (7) and (8) respec-
tively: 

 
 

(7) 
 
 
 
 
 
 
 

   (8) 
 
 
 
Matrix H of Hsiao code (6) has some advantages over matrix H of Extended 

Hamming code (2): 
• A lower total number of 1’s. 
• The number of 1’s in the rows is more balanced, with a lower maximum 

weight row.  
 
Thus, it is expected an improvement of the area, power, and delay overhead. In this 

way, we have built a Matrix code with the same layout shown in Fig. 2, Fig. 3 and 
Fig. 4 (for 16, 32 and 64 data bits respectively). In this new Matrix code, we have 
used the Hsiao code shown in (7) instead the pseudo Extended Hamming SEC-DED 
code shown in (3). 

Notice that the redundancy of Matrix-Hsiao code is the same as the Matrix-
Extended Hamming code, because the number of check bits Cj and parity bits Pk is the 
same. 

 

𝐶𝐶0 = 𝑋𝑋0⨁ 𝑋𝑋1⨁ 𝑋𝑋2⨁ 𝑋𝑋4⨁ 𝑋𝑋5 
𝐶𝐶1 = 𝑋𝑋0⨁ 𝑋𝑋1⨁ 𝑋𝑋3⨁ 𝑋𝑋4⨁ 𝑋𝑋6 
𝐶𝐶2 = 𝑋𝑋0⨁ 𝑋𝑋2⨁ 𝑋𝑋3⨁ 𝑋𝑋5⨁ 𝑋𝑋7 
𝐶𝐶3 = 𝑋𝑋1⨁ 𝑋𝑋2⨁ 𝑋𝑋3⨁ 𝑋𝑋6⨁ 𝑋𝑋7 
𝐶𝐶4 = 𝑋𝑋4⨁ 𝑋𝑋5⨁ 𝑋𝑋6⨁ 𝑋𝑋7 

 

𝑆𝑆0 = 𝐶𝐶0⨁ 𝑋𝑋0⨁ 𝑋𝑋1⨁ 𝑋𝑋2⨁ 𝑋𝑋4⨁ 𝑋𝑋5 
𝑆𝑆1 = 𝐶𝐶1⨁ 𝑋𝑋0⨁ 𝑋𝑋1⨁ 𝑋𝑋3⨁ 𝑋𝑋4⨁ 𝑋𝑋6 
𝑆𝑆2 = 𝐶𝐶2⨁ 𝑋𝑋0⨁ 𝑋𝑋2⨁ 𝑋𝑋3⨁ 𝑋𝑋5⨁ 𝑋𝑋7 
𝑆𝑆3 = 𝐶𝐶3⨁ 𝑋𝑋1⨁ 𝑋𝑋2⨁ 𝑋𝑋3⨁ 𝑋𝑋6⨁ 𝑋𝑋7 
𝑆𝑆4 = 𝐶𝐶4⨁ 𝑋𝑋4⨁ 𝑋𝑋5⨁ 𝑋𝑋6⨁ 𝑋𝑋7 
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3   Error Correction Codes Evaluation  

As commented before, in this paper we propose the use of Hsiao codes instead of 
Extended Hamming codes inside a Matrix code. We have used the same logical bit 
layout for both types of Matrix codes. 

Thus, in this section, we compare the error coverage of the different Matrix codes 
commented before, as well as the overheads introduced by these codes. 

This evaluation has been carried out with two different processes. During the first 
one, we have injected faults in C models of the ECCs for error coverage evaluation. 
Then, in a second step, we have implemented the different ECCs in VHDL, and we 
have synthesized them, to estimate area, power, and delay overheads. This section 
finishes with a global comparison of the ECCs. 

3.1   Error Coverage Evaluation 

In coding theory, the term random error commonly refers to one or more bits in er-
ror, distributed randomly in the encoded word (data bits plus code bits generated by 
the ECC). Random errors can be single (only one bit affected) or multiple. Single 
errors only affect a single memory cell. They are commonly produced by single event 
upsets (SEU, in random access memories) or single event transients (SET, in combi-
national logic) [2][3][4][5]. 

As commented in the Introduction section, multiple errors are becoming more fre-
quent due to the continuous increasing of the integration scale [2][7][8][25]. The main 
physical causes of multiple errors in the context of RAM memories are diverse: high 
energy cosmic particles that hit some neighbor cells, crosstalk between neighbor cells, 
etc. [26][27]. 

In this way, to study the error coverage of the different ECCs, we have developed a 
simulator that allows injecting different types of error. Particularly, we have injected 
single errors, as well as random multiple errors. 

The basic scheme of our fault injection tool is shown in Fig. 5. By comparing the 
input and output words, the simulator can check if the error injected leads to a right or 
wrong decoding. Also, the decoder circuit can activate the NRE (Non Recoverable 
Error) signal when an error is detected but it cannot be corrected. 

ENCODER 
CIRCUIT

DECODER 
CIRCUIT

COMPARATOR

n kk

n

n
u b r û

e

Right/wrong decoding
Non Recoverable
Error (NRE)

 
Fig. 5. Block diagram of the fault injector simulator  
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Repeating the process for all errors of a given size and model, we have been able to 
count the number of corrected and/or detected errors with respect to the total number 
of injected errors. That is, we have been able to calculate the coverage of each ECC. 

We must remark that we have not injected errors according to their probability of 
occurrence, as our goal is to measure the correction and detection coverages, that 
represent percentages. Specifically, we have injected each type of error (single errors 
or multiple errors of different lengths) in all bits of the codeword (data and check bits) 
to verify the error correction/detection capabilities of the different ECCs. Obviously, 
random errors of length 8 will be much less frequent than random errors of length 2, 
as bibliography shows [4][25]. 

All blocks of the fault injection tool have been developed in C, using bitwise logic 
operators for an accurate simulation of the hardware behavior. These circuits are im-
plemented in C as encoding and decoding functions. Adapting the simulator for a 
different ECC is as simple as adjusting the word lengths and replacing the encoding 
and decoding functions for the new ECC, extracted from the parity matrix H. 

Correction coverage has been calculated as: 
 

  (9) 
 
 
where Errors_Corrected are the number of errors corrected by the ECC, and Er-

rors_Injected are the number of errors injected. Although errors are injected in both 
data and check bits, notice that error corrected means that data bits have no errors. 

On the other hand, detection coverage is calculated as: 
 
 

(10) 
 
 
where Errors_Detected corresponds to the number of errors detected but not cor-

rected by the ECCs. 
Fig. 6, Fig. 7, and Fig. 8 show the error coverages for Matrix-Extended Hamming 

and Matrix-Hsiao codes. Errors have been injected in the layouts of Fig. 2, Fig. 3, and 
Fig. 4, corresponding to 16, 32 and 64 data bits. Single and multiple random errors 
with length from 2 to 8 have been injected. This range is representative of typical 
values of MCUs in terrestrial and critical environments, such as space environment 
[4][25]. 

As it can be seen in Fig. 6, Fig. 7 and Fig. 8, all ECC show the same trend, and al-
most the same data. On the one hand, when using Matrix-Hsiao codes it is possible to 
correct all single errors as well as all 2-bit random errors. In the case of the Matrix-
Extended Hamming codes, and as explained before, there exist some patterns of 2-bit 
errors that cannot be corrected. For 3-bit and longer, we can see that the correction 
coverage decreases, and both ECCs present very similar error correction coverages. 
On the other hand, all ECCs can detect 100% of single and 2-bit random errors, and 
more than 97% of longer errors.  

 

𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 × 100 

𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶+ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸_𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 × 100 
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Fig. 6. Correction and detection coverages. Data word length = 16 bits 
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Fig. 7. Correction and detection coverages. Data word length = 32 bits 
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Fig. 8. Correction and detection coverages. Data word length = 64 bits 

3.2   Synthesis results  

We have synthesized all ECCs for 16, 32, and 64 data word length, using Extended 
Hamming and Hsiao codes. In total, six different Matrix codes. To do this, we have 
implemented them in VHDL, and using CADENCE software [30], we have carried 
out a logic synthesis for 45 nm technology by using the NanGate FreePDK45 Open 
Cell Library [31][32]. 

In this way, Fig. 9 shows the area occupied by the different circuits (in nm2, 1 
nm=10-9 m). Matrix-Hsiao codes present an improvement of the area overhead for the 
three data word lengths. As commented in Section 2.C, the design of the parity check 
matrix for Hsiao codes minimizes the number of 1’s, which provokes less hardware 
area. This reduction in hardware gives an additional benefit, as it tends to lower the 
chance of failure, increasing the reliability of the ECCs. Notice that the decoder’s area 
is bigger than the encoder’s area. The decoder must calculate the syndrome, locate the 
error, and correct it. Besides, longer data words provoke a higher area because the 
size of encoders and decoders increases. 
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Fig. 9. Area overhead (in nm2) 

On the other hand, Fig. 10 shows the power consumption (static (leakage) plus dy-
namic) of the different encoders and decoders (in μW, 1 μW=10-6 W). As it can be 
observed, power consumption follows the same trend than area overhead. That is, 
power overhead is lower when using Matrix-Hsiao codes (a half, more or less) for all 
data word lengths. As explained in Section 2.C, the reduction of the power consump-
tion is an expected result due to the lower area and the limitation of the logic transi-
tions. 

Besides, longer data words provoke higher power consumption (because the size of 
encoders and decoders increases). In any case, for the same data word length, Matrix-
Hsiao codes power overhead is lower than the Matrix-Extended Hamming one. 

Fig. 11 and Fig. 12 show static and dynamic power separately. As expected, the 
trend is maintained. That is, Matrix-Hsiao codes show better results in both cases. 

Lastly, Fig. 13 shows the delay introduced by the different Matrix codes (in ps, 1 
ps=10-12 s). As observed, encoders for Matrix-Extended Hamming codes present a 
greater delay than the same circuits for Matrix-Hsiao codes. This is caused by the 
balanced number of 1’s in each row of the Hsiao parity check matrix, which provokes 
a reduction on the number of logic levels. Faster encoding and decoding imply faster 
memory writing and reading cycles. 
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Fig. 10. Power consumption (in µW) 
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Fig. 11. Static power consumption (in µW) 
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Fig. 12. Dynamic power consumption (in µW) 
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Fig. 13. Delay overhead (in ps) 
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3.3   Global evaluation of the ECCs. M metric  

Results obtained in previous sections show the advantages in using Hsiao codes to 
improve Matrix codes. In order to provide a global evaluation of the different codes, 
several metrics have been proposed in the literature [15][16][23][33]. 

Introduced in [23], M metric is a complete and accurate metric that can be used to 
tradeoff area, power, delay, redundancy, and error coverage. This allows comparing 
different codes in a global sense. Also, this metric can be used to enhance a parameter 
in a specific application by weighting it appropriately. M metric is defined as [23]: 

 
 

(11) 
 
 
Fig. 14 shows the results of the calculus of the M metric for all Matrix codes. In 

this way, and according to M metric, it is worthwhile the use of the Hsiao code to 
form a Matrix code. As we can see, and for a specific codeword length, M metric for 
the respective Matrix-Hsiao code is better than the Matrix-Extended Hamming one. 
For 3-bit errors or longer, M metric decreases due to the reduction of error coverages.  
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Fig. 14. M metric for both ECC Matrix codes 
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5   Conclusions  

In this work, we have introduced a series of Matrix codes that use Hsiao codes in-
stead of Extended Hamming codes. We have observed savings in the area, power, and 
delay overhead of the ECC circuits, with the same redundancy.  

Concerning error detection and correction, we have injected random single and 
multiple errors in the codeword layouts. We have checked that Matrix-Hsiao codes 
are able to correct all single and 2-bit errors, while Matrix-Extended Hamming codes 
can only correct 100% of single errors.  

To evaluate the global goodness of the codes, we have used the M metric, a figure 
of merit that combines area, power, delay, error coverage, and redundancy factors. As 
can be seen, Matrix-Hsiao codes present better values of M in all the cases. 

In the future, we want to continue developing ECCs to decrease area, power, and 
delay overheads, while maintaining, or even increasing, the error coverage. 
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Abstract. During these last years, the use of embedded systems has grown ex-
ponentially. New applications are continuously implemented in these systems, 
such as neural networks. This type of machine learning software is often highly 
accurate and efficient, and it has been used in a wide variety of applications. 
Also, it makes an extensive use of memory. A problem that carries out the ex-
pansive use of embedded systems is its reliability. Embedded systems are built 
with low-reliable components, reduced weight and volume, and not very high 
computing and memory capacity for low power consumption. Usually, memory 
system is the component most affected by faults in a computer system.  
With these conditions, some questions arise. How can we rely on the results ob-
tained by a neural network implemented in an embedded system? How will af-
fect to the behavior of the neural network a faulty bit?  

1   Introduction 

Nowadays, neural networks are being widely used in a huge number of applications, 
and their implementation ranges from high-performance computing systems [1] to 
embedded systems [2]. 

Embedded systems are being used massively, for instance, on the Internet of 
Things (IoT) or in safety-critical applications. This massive use has provoked a huge 
amount of generated data [3], that must be processed.  

Neural networks are one of these data-processing applications moving to embed-
ded systems [2]. In this way, an aspect that is gaining importance is the effects of 
faults in neural networks, especially when they execute safety-critical applications 
[4][5][6]. 

Currently, CMOS technology integration scale has allowed the design of memory 
systems with a great storage capacity. However, this aggressive scaling has also 
caused an increment in the memory fault rate [7]. As the memory cell critical charge 
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and the energy needed to cause a Single Cell Upset (SCU) is also reduced, Multiple 
Cell Upsets (MCUs), that is, simultaneous errors in more than one memory cell, can 
also be induced by a single particle hit [8]. 

If an embedded system is going to execute memory-intensive programs, such as 
neural networks do, we must rely on this processing. Thus, it is interesting to know if 
memory errors would affect the neural network’s prediction. Embedded systems have 
been built with low-reliable components, reduced weight and volume, and not very 
high computing and memory capacity for low power consumption. In this way, if 
fault tolerance is needed, it must be implemented by software, as the low-cost hard-
ware used doesn’t have this protection.  

In this work, we have implemented a Convolutional Neural Network (CNN) [9]10] 
in a Raspberry Pi, and then, we have carried out a series of fault injection campaigns 
in the tensors of the CNN, as they are an essential part of the CNN. Tensors are mas-
sively used, and they are stored in SRAM. Thus, we have studied the effects of simple 
and multiple adjacent faults in the tensors of the CNN by injecting different fault 
models, such as bit-flip and stuck-at (‘0’, ‘1’). 

This work is organized as follows. Section 2 summarizes previous works analyzing 
sis the reliability of neural networks. Section 3 describes the system used, while Sec-
tion 4 explains the experiments carried out. Finally, Section 5 concludes this paper. 

2   Related Works 

Different works have proposed several approaches to increment the reliability of neu-
ral networks. For instance, in [11], authors evaluate the reliability of different GPUs 
executing various neural networks. One of these GPUs implements a SEC-DED (Sin-
gle Error Correction-Double Error Detection) ECC and a parity check. Authors 
checked that error detection property provokes a high number of application crashes 
in the GPU (they used three different NVIDIA GPUs: i) TeslaK40; ii) TegraX1; and 
iii) TitanX). This result has been confirmed in [12], where authors assure that it is 
better to leave memory unprotected than use error detection codes. 

The use of an ECC together with a new training scheme of the neural network is 
proposed in [13], trying to increment the neural network reliability. Specifically, the 
ECC used is a SEC-DED, and authors employed devices equipped with a 40-core 
2.2GHz Intel Xeon Silver 4114 processor, 128GB of RAM, and an NVIDIA TITAN 
Xp GPU with 12GB memory.  

On the other hand, authors in [14] used different ECCs to selectively protect cer-
tain bits in the weights of the neural network. The idea is to achieve a trade-off be-
tween redundancy and neural network performance. This idea is also used in [15], 
where some non-critical bits are replaced with Hamming ECCs. In any case, all these 
works do not protect all data bits.  

A different type of ECC is presented in [19], where a new error correction scheme 
for analog neural network accelerators based on arithmetic codes is presented. They 
simulate the accelerator used. 

Fault injection has been massively used to study neural network reliability. For ex-
ample, in [16], the impact of faults in different data types is studied. They inject bit-
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flips in the weights of the neural networ. Single-event upsets are injected in [4], in 
data paths and buffers. They classify error propagation with respect to neural network 
structure, data types, and layers properties.  

The effects of permanent faults have been studied in [17]. Specifically, they inject 
stuck-at (‘0’, ‘1’) faults. On the other hand, in [18], statistical fault injection is used to 
reduce the number of fault injections experiments.  

Summarizing, the works presented in this section analyses the effects of faults in 
neural networks, but they only studied transient faults (such as bit-flips), or permanent 
faults (such as stuck-at (‘0’, ‘1’)) in systems with a great capability of memory and 
calculus. In the work we present here, we have studied the effects of transient and 
permanent faults in an embedded system, that is characterized by a no so powerful 
processor and a limited memory capacity. 

3   System description  

3.1   Convolutional Neural Network  

Convolutional Neural Networks (CNNs) are a subset of Deep Neural Networks [9]. 
Their name comes from the mathematical linear operation called convolution, usually 
used between matrixes. CNNs include multiple layers, such as convolutional, non-
linearity, pooling, and fully-connected. CNNs have a very good performance in appli-
cations that deal with image classification, computer vision, and natural language 
processing. 

In the present work, we have implemented a simplified version of LeNet CNN 
[20]. Our CNN uses the MINST database for training and test [21]. Specifically, our 
CNN presents the diagram shown in Fig. 1. It has almost 45000 weights, stored in 
memory in 32-bit floating point format. 

3.2   Hardware used 

We have implemented the CNN explained before in a Raspberry Pi Model B+ V1.2. 
This model integrates the BCM2835 SoC with CPU, GPU, DSP and SDRAM. It uses 
a 700MHz ARM 1176JZF-S processor, and it works with 32-bit RISC. The Broad-
com VideoCore IV model GPU features OPEN GL ES 2.0 MPEG-2 and VC-1 at 
1080p resolution. Its RAM memory is 512MB shared with the GPU. 
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Fig. 1. Convolutional Neural Network organization 

4   Study of the effects of transient and permanent faults in a 
Convolutional Neural Network  

As commented in Section 2, the impact of faults in the weights of neural networks is 
being extensively studied, by injecting permanent and/or transient faults [6][17][26]. 
When studying specifically transient faults, usually bit-flips are injected. For instance, 
in [5], extensive fault injection campaigns in the weights of neural networks were 
made to study the capability of different memory encryption schemes to detect faults. 

On the other hand, under the denomination of Bit-Flip Attack (BFA), different 
works study the effects of bit-flip errors in the weights of a neural network from relia-
bility and security points of view. This is the case of [22]. This work arrives at the 
same conclusion: the closer the faulty bit is to the Most Significant Bit (MSB), the 
higher the probability of damage provoked. 

The main idea of this work is to study the effects of transient and permanent faults 
in the behavior of a CNN implemented in a Raspberry Pi. To do this, we have carried 
out a series of fault injection experiments to check the validity of our approach. Fault 
injection is a very well-known technique used to assess the reliability of computer 
systems [23][24][25]. It allows a precise introduction of faults in the system.  

In this work, we have injected single and multiple adjacent bit-flips and stuck-at 
(‘0’, ‘1’) in the weights of the two convolution layers of the CNN (see Fig. 1). Multi-
ple faults range from 2 to 4. Fig. 2 show only the percentage of no correct predictions. 
As it can be seen, the biggest part of injected errors is tolerated (they don’t cause any 
misprediction). This is provoked by the intrinsic redundancy of the neural network. 

However, there exist a non-negligible percentage of mispredictions even with a 
unique bit in error in a single layer. Thus, a bigger number of bits in error provokes a 
bigger percentage of mispredictions. We must remark that a fault (single or multiple) 
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is injected in a unique weight. That is, an incorrect bit of a unique weight out of the 
set of weights of a specific layer can cause a misprediction. 

If we study in more detail Fig. 2, we can see that for both layers, stuck-at ‘0’ errors 
are not very harmful (the percentage of mispredictions are almost zero). The reason is 
that the biggest part of weight bits is 0, provoking that the errors do not activate.  

On the other hand, for Convolution layer 1, we can observe that bit-flips and stuck-
at ‘1’ errors present similar percentages of mispredictions, while for Convolution 
layer 2, bit-flips errors provoke a bigger percentage of mispredictions. Another inter-
esting fact we can observe is that the first layer is more vulnerable to errors than the 
second layer.  
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Fig. 2. Percentage of No Correct Predictions for both convolutional layers 

Once checked that an error in one weight can provoke a misprediction, next step is 
to study whether all bits of the weights are equally harmful. That is, we want to study 
if a fault in a unique bit is equally risky that a fault in a different bit. Fig. 3 shows the 
percentage of mispredictions according to bit position for single and multiple adjacent 
bit-flips in both Convolutional layers. As we can see, all mispredictions are provoked 
when the Most Significant Bits (MSBs) are modified. Specially, when bit 30 is per-
turbed. Weights are stored in IEEE754 simple precision format (see Fig. 4). MSBs 
include the sign bit, the 8 bits of the exponent, and the MSBs of the magnitude (ex-
cluding the implicit bit). Particularly, a change in the bit 30 provokes a change in the 
MSB of the exponent, causing a really big change in the weight. Thus, a change that 
involves bit 30 has a great probability of causing a misprediction.  

On the other hand, from bit 18th to 0th, no miscorrections are shown. That is, even 
modifying 4 adjacent bits at the same time, the CNN predictions are correct. 
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This trend is the same for both convolutional layers. Modifications of MSBs pro-
voke the mispredictions. Almost all problems are provoked when bit 30 is perturbed. 
There exist also significative mispredictions up to bit 23.  

Fig 3. also shows a substantial percentage of mispredictions when single faults af-
fect bit 25 of the second convolutional layer. Weights values are between -1 and 1, so 
bit 25 is normally set to 0. A change in this bit causes a large change in the weight 
value, provoking the misprediction. 
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Fig. 3. Percentage of mispredictions according to bit position (bit-flip) for both convolutional 
layers 

31 30 23 22 0

S MagnitudeExponent
 

Fig. 4. IEEE754 simple precision format 

Fig. 5 shows the percentage of mispredictions according to bit position when in-
jecting stuck-at ‘1’ faults. As we can see, the trend is the same that the shown before 
for bit-flips. That is, perturbations of bit 30 causes the biggest part of mispredictions, 
Convolution layer 2 has more problematic bits, and changes in bit 25 of Convolution 
layer 2 causes a significative percentage of mispredictions.  
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Fig. 5. Percentage of mispredictions according to bit position (stuck-at ‘1’) for both convolu-
tional layers 

Finally, Fig 6 shows the percentage of mispredictions when stuck-at ‘0’ faults are 
injected. A fact to consider is that percentages of mispredictions are really low (as 
shown in Fig. 2). In any case, we can see some interesting data. In Convolution layer 
1, faults affecting MSB are equally important, as the percentages of mispredictions 
are equally distributed. Mispredictions are provoked by faults injected in the exponent 
bits (see Fig. 4). On the other hand, the higher intrinsic redundancy of Convolution 
layer 2 provokes mispredictions only when bits 31 and 30 are perturbed.  
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5   Conclusions  

In this work, we have studied the reliability of a Convolutional Neural Network 
(CNN) implemented in a Raspberry Pi. Particularly, we have used a simplified ver-
sion of LeNet. To carry out this study, we have executed an exhaustive fault injection 
campaign. We have injected single and multiple adjacent bit-flip and stuck-at (‘0’, 
‘1’) faults in all the bits of all the weights of both convolutional layers of the CNN. 

We have studied if a unique erroneous weight can provoke a misprediction, that is, 
an incorrect behaviour of the complete CNN.  

We have seen that there exist a non-negligible percentage of mispredictions caused 
even by a unique bit in error in both convolutional layers. These mispredictions are 
mainly caused by bit-flip and stuck-at ‘1’ faults. Stuck-at ‘0’ faults provoke a margin-
al percentage of mispredictions. Also, Convolutional layer 2 is more reliable than 
Convolutional layer 1. This is caused by the intrinsic redundancy of this second layer. 

As expected, a bigger number of erroneous bits provoke a bigger percentage of 
mispredictions.  

We have also studied which bits are more susceptible to cause an incorrect behav-
iour of the CNN. As weights are stored in IEEE754 simple precision format, MSBs 
are more sensitive to provoke mispredictions. Particularly, we have seen that faults in 
bit 30 are especially prone to provoke mispredictions. 

In future works, we will continue studying the reliability of other types of network 
layers, as well as we want to define and implement fault tolerant mechanisms able to 
augment neural network’s reliability without adding great overheads. 
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Abstract. In this study, microwave dielectric thermal analysis (MW-DETA) 
was employed to improve the sustainability of two typically energy-intensive 
processes: pigment synthesis and the recycling of steel industry wastes. This re-
al-time characterization technique facilitated the microwave process optimiza-
tion by enabling reductions in reaction temperatures and simplifications of raw 
material mixtures. Practical examples are provided, demonstrating how the 
analysis of dielectric properties in relation to various processing parameters 
yielded optimization strategies. These strategies enhanced process efficiency, 
minimized resource consumption, and improved product quality. The insights 
gained from MW-DETA contribute to the optimization of microwave processes, 
thereby promoting their lower environmental impact. 

1   Introduction 

In order to minimize the climate change, reducing CO2 emissions and enhancing re-
source efficiency are critical objectives. These goals are particularly important for 
energy-intensive industries with typically high environmental impact such as ceramics 
and steel. Electrifying this type of processes using microwave technology presents a 
promising solution, offering an alternative based on electricity and at the same time 
providing advantages like shorter processing times, higher efficiencies, and compact 
device design. In this context, microwave technology appears as a promising candi-
date for sustainability by enabling the use of renewable energy sources instead of 
fossil fuels. 
Despite the well-documented advantages of microwave-driven processes, their indus-
trial application remains limited due to insufficient understanding of the fundamental 
interactions between microwave fields and matter. Consequently, as microwave appli-
cators are developed for industrial applications, there is a growing demand for analyti-
cal techniques that assist process designers in precisely defining and optimizing pro-
cess steps and conditions for these new microwave-based processes [1-3]. 
Microwave-driven processes are predominantly influenced by the dielectric properties 
(dielectric constant and loss factor) of the materials involved. These properties, which 
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are unique to each material, determine whether a material will reflect, absorb, or 
transmit the microwave field. They are intrinsically linked to the material's composi-
tion and microstructure and are also influenced by parameters such as frequency, 
temperature, density, and moisture content. Accurate knowledge of these dielectric 
properties provides crucial insights into the behavior of materials during processing. 
The absence of this knowledge has been identified as a significant barrier by numer-
ous researchers and engineers in the field [1,4].  
In this context, microwave dielectric thermal analysis (MW-DETA) has recently 
emerged as a novel approach for providing in situ, accurate values of material dielec-
tric properties as a function of temperature under the influence of microwave fields 
[3]. The aim of this study is to demonstrate how this technique serves as a convenient 
and valuable tool for acquiring insights into microwave processes and facilitating their 
optimization. To this end, two distinct processes were chosen: the synthesis of ceramic 
pigments and the recycling of steel wastes (carbothermic reduction of iron-bearing 
products). These processes are representative of industries characterized by high ener-
gy and resource consumption, thus presenting clear opportunities for leveraging mi-
crowave technology and the information obtained from the application of MW-DETA.  

1.1   Experimental setup 

The MW-DETA setup (Figure 1) is a dual-mode cylindrical cavity, with one mode 
(TE111 at a frequency 2.45 GHz) for heating a sample (15mm height and 10mm di-
ameter) and another mode (TM010) for measuring its dielectric properties as a func-
tion of the temperature (from room temperature to approx. 1200ºC). The sample is 
inserted in a cylindrical quartz holder, and the cavity has holes for sample inspection. 
The MW-DETA can be combined with in situ Raman and mass spectrometry as de-
scribed elsewhere [3]. 
The sample bulk temperature is determined from surface temperature measurements 
from a IR pyrometer after the application of a thorough calibration procedure de-
scribed in [5]. 
 

3

1

2

 

Fig. 1. Set up for dielectric characterization at microwave frequencies. 1) Microwave 
cylindrical cavity with insertion hole. 2) Quartz holder. 3) Sample. 
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The characterization method is based on the measurement of some microwave magni-
tudes as the resonant frequency and quality factor of the cylindrical cavity with the test 
sample being heated with microwave energy. The presence of the sample modifies the 
resonance properties of the microwave resonant cavity and these changes are em-
ployed to determine the dielectric properties. The test has an accuracy of ±(1‐2)% for 
the dielectric constant and ±(2‐5%) for the loss factor [3]. 

2   Application of MW-DETA to the steel industry 

The recycling of residues from the steel industry involves the following process: the 
residues (mixture of iron oxides) are mixed with a certain percentage of carbon and 
heated at high temperatures (>1000ºC), causing their carbothermic reduction to recov-
er metals such as iron and zinc. This kind of residues presents very good absorption of 
microwave energy, thus microwave technology is a very promising option with high 
energy savings compared to conventional heating methods. 
Carbothermic reduction of an iron- and zinc-bearing waste was studied through MW-
DETA up to 1000ºC, and the results are presented in Figure 2. Differential Scanning 
Calorimetry (DSC) of the same sample is also presented.  

 

Fig. 2. Measurements of dielectric properties (dielectric constant and loss factor) and 
Differential Scanning Calorimetry (DSC) of an iron-bearing residue. The color bands 

represent the different process stages. 
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The information provided by these two techniques allowed the identification of differ-
ent stages during the carbothermic reduction process, represented as different color 
bands in the Figure: 

• Green: (23°C - 330°C) Dehydration of the sample and gradual increase of di-
electric properties with the temperature 

• Yellow (330°C - 480°C): Dehydroxilation of calcium hydroxide that leads to 
a higher loss factor (higher capacity to absorb microwave energy) 

• Red (480°C - 590°C): Decomposition of zinc ferrite, magnetite and coke, 
with further increase of dielectric properties 

• Blue (590°C - 680°C): Reduction of magnetite to wüstite, accompanied by a 
drastic decrease of dielectric properties (sub-products have less capacity to 
absorb microwaves) 

• Orange (680°C - 840°C): Wüstite reduction to metallic iron (first desirable 
product) that again increases the microwave absorption 

• Grey (840°C - 1000°C): Reduction of zinc oxide and evaporation of zinc 
(second valuable product) 

 
The most interesting result from this characterization, is that the reduction of magnet-
ite and wüstite (blue and orange stages) that lead to the release of pure metallic iron 
occur at temperatures above 580ºC as opposed to the 650ºC required when the same 
process is performed with conventional heating [6]. This is in accordance to previous 
observations in the literature [6,7] and can be related to the particular capacity of 
microwaves to act as a reducing agent [8]. 

 
The MW-DETA analysis was also performed to evaluate the effect of adding a certain 
quantity of carbon to the initial mixture, which is the additive commonly employed to 
enhance the reduction process in the conventional procedure. Figure 3 shows the die-
lectric properties of two samples with different carbon content (C/O ratios of 50% and 
100%).  

 

 
Fig. 3. Measurements of dielectric properties (dielectric constant and loss factor) of 
iron-bearing residues mixed with carbon (C). The arrows indicate the direction of 

higher carbon content. 
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As expected, the sample with higher carbon content presents higher dielectric proper-
ties due to the good absorbance of carbon. However, the dielectric curves with tem-
perature reveal that the different stages of the process occur in approximately the same 
temperature ranges. The main conclusion derived from this analysis is that a high 
carbon content can be avoided in the microwave-driven process, thus it is possible to 
reduce the quantity of this additive optimizing the use of resources and the emitted 
CO2. 

3   Application of MW-DETA to the ceramic industry 

In a second example, MW-DETA was applied to the ceramic sector, where microwave 
technology allows efficient and environmental-friendly synthesis of pigments. 
MW-DETA was employed in this case to evaluate the microwave synthesis of ceramic 
pigments. Chromium black hematite was selected as a reference pigment because it is 
most extensively used for coloring glazes and ceramic bodies. The traditional synthe-
sis of this ceramic pigment includes the calcination of the raw mixture at high temper-
ature, 1100ºC during 2 hours. At this temperature the metal oxides react with each 
other to generate the new crystalline structure that forms the pigment: 
 

 
 
In this case, a sample of the raw mixture was introduced and measured in the MW-
DETA setup under microwave irradiation, and the dielectric curves of the sample 
where analysed with temperature during the synthesis. 
Figure 4 shows the main results from this analysis, where the dielectric constant re-
vealed the following stages: 

1. 20-600°C: At low temperatures, the dielectric properties increase slowly with 
temperature, with gradual increase of its capacity to absorb microwave ener-
gy. 

2. 650°C: The dielectric constant values <1 indicate that a metallic behavior 
starts to predominate, so the material cannot be considered as a pure dielec-
tric [9]. At the same time, the loss factor increases leading to a higher absorp-
tion of microwave energy. 

3. 1000ºC: Minimum in dielectric constant indicates the synthesis temperature, 
which perfectly correlates with the endothermal peak observed in DSC. This 
means that the pigment crystal formation occurs at the same temperature than 
in the conventional process. 

4. >1000ºC: Crystal growth is observed by a drastic increase of the dielectric 
properties at high temperatures. 
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Fig. 4. Dielectric properties (dielectric constant and loss factor) of a ceramic pigment 
(Chromium black hematite) and correlation with DSC. Up-right: sample before and 
after the microwave treatment, Down-right: standard pigment obtained with the con-

ventional method. 
 
 
The pigment sample was processed at the required temperature (1000ºC according to 
the peak in the dielectric properties) during 15 minutes. Despite of the shorter pro-
cessing time compared to the conventional process (2 hours), the composition analysis 
(X-ray Diffraction) showed the same results regardless of the processing method (See 
Figure 5). 
 

43



 
 

Fig. 5. X-ray diffraction of the raw mixture, the microwave and the conventional pig-
ment showing the same final composition. 

 
MW-DETA was further applied to optimize the raw materials mixture. For this pur-
pose, two different types of chromium where considered in the mixture: Type A with 
specific surface area of 5 and Type B, with specific surface area of 2. The objective 
was to evaluate the process by studying the dielectric curves and select the most ap-
propriate chromium. 
Figure 6 shows the comparison of the pigment dielectric constant containing both 
types of chromium. The position of the minimum which represents the synthesis tem-
perature is clearly higher (1000ºC) in the case of having chromium Type A, compared 
to the mixture containing chromium type B (900ºC). Thus, selecting chromium Type 
B for the pigment composition allows to reduce in approx. 100ºC the process tempera-
ture, having a clear benefit on the total energy consumption. 
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Fig. 6. Comparison of the dielectric constant of the ceramic pigment with two differ-
ent types of Chromium in the raw materials mixture. 

4   Conclusion 

MW-DETA has been proposed as an efficient and precise tool for in situ determina-
tion of dielectric properties of materials during microwave heating processes. The 
analysis of dielectric curves has yielded critical insights into material behavior at vari-
ous temperatures, reaction stages, and the influence of different parameters. 
In the first case, MW-DETA was employed to analyze the recycling of steel wastes. 
The dielectric properties demonstrated the capability of microwave fields to act as a 
reducing agent, which significantly lowers the required temperatures compared to 
conventional processes. Furthermore, the dielectric curves indicated that the amount 
of carbon necessary in the mixture is reduced in the microwave-driven process. This 
information directly translates into substantial savings in energy consumption and 
resource utilization. 
In the second case, the synthesis of ceramic pigment was investigated using MW-
DETA. While the required temperatures were consistent across heating methods, the 
microwave synthesis required only 15 minutes compared to the 2 hours needed in the 
conventional method. The synthesis temperature was clearly identifiable in the dielec-
tric constant curves, allowing for the selection of raw material compositions that re-
quired lower synthesis temperatures, thereby optimizing energy consumption. 
In conclusion, MW-DETA analysis supplied essential information for the develop-
ment of potential microwave industrial plants across various energy-intensive sectors, 
significantly reducing their environmental impact. This work represents a step towards 
a more sustainable industry by promoting the electrification of industrial processes 
and enhancing resource efficiency. 

45



7   Acknowledgements 

This work was funded by the European Union’s Horizon 2020 research and innova-
tion 

programme under grant agreement number 820783. 
The authors wish to thank Al Farben S.A. for providing the pigment samples, and K1-
MET for providing the steel wastes. 

References 

1. P. Ramos, D. Albuquerque and J. Pereira. “Numerical simulation and optimization of the 
ceramic pigments production process using microwave heating”, Chem. Eng. and Proc. – 
Proc. Intens. 169, 108567, 2021. 

2. B. Garcia-Baños, J.M. Catalá-Civera, F.L. Peñaranda-Foix, P. Plaza-González and G. 
Llorens-Vallés, “In Situ Monitoring of Microwave Processing of Materials at High Temper-
atures through Dielectric Properties Measurement”, Materials 2016, 9(5), 349. 

3. J.M. Catala-Civera, A.J. Canós-Marín, P. Plaza-González, J.D. Gutiérrez Cano, B. García-
Baños and F.L. Penaranda-Foix, “Dynamic Measurement of Dielectric Properties of Materi-
als at High Temperature During Microwave Heating in a Dual Mode Cylindrical Cavity” 
IEEE Trans. on Microw. Theory Techn., Vol. 63, pp. 2905-2914, 2015. 

4. Rao, K.J.; Vaidhyanathan, B.; Ganguli, M.; Ramakrishnan, P.A. Synthesis of Inorganic 
Solids Using Microwaves. Chem. Mater. 1999, 11, 882–895. 

5. García-Baños, B.; Jimenez-Reinosa, J.; Penaranda-Foix, F.L.; Fernandez, J.F.; Catalá Civera, 
J.M. Temperature Assessment of Microwave-Enhanced Heating Processes. Sci. Rep. 2019, 
1, 10809. 

6. Agrawal, D. Microwave sintering of metal powders. In Advances in Powder Metallurgy; 
Chang, I., Zhao, Y., Eds.; Woodhead Publishing Limited: Sawston, Cambridge, UK, 2013; 
pp. 361–379. 

7. Omran, M.; Fabritius, T.; Heikkinen, E.; Chen, G. Dielectric properties and carbothermic 
reduction of zinc oxide and zinc ferrite by microwave heating. R. Soc. Open Sci. 2017, 4, 
170710. 

8. Serra, J.M.; Borrás-Morell, J.F.; García-Baños, B.; Balaguer, M.; Plaza-González, P.; San-
tos-Blasco, J.; Catalán-Martínez, D.; Navarrete, L.; Catalá-Civera, J.M. Hydrogen produc-
tion via microwave-induced water splitting at low temperature. Nat. Energy 2020, 5, 910–
919. 

9. Yao, X.; Kou, X.; Qiu, J.; Moloney, M. Generation Mechanism of Negative Dielectric Prop-
erties of Metallic Oxide Crystals/Polyaniline Composites. J. Phys. Chem. C 2016, 120, 
4937–4944. 

 

46





The ITACA-WIICT is a meeƟng forum for 
scienƟfics, technicians and other 
professionals who are dedicated to 
InformaƟon and communicaƟon 
technologies study and research. Its 
fundamental scope is to promote the 
contact among scienƟfic and 

prprofessionals, improving the cooperaƟon 
as well as the technological transfer 

among professionals.


